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Operating instructions

3B SCIENTIFIC3B SCIENTIFIC3B SCIENTIFIC3B SCIENTIFIC3B SCIENTIFIC® PHYSICSPHYSICSPHYSICSPHYSICSPHYSICS

The torsion pendulum may be used to investigate free,
forced and chaotic oscillations with various degrees of
damping.

Experiment topics:
• Free rotary oscillations at various degrees of damp-

ing (oscillations with light damping, aperiodic os-
cillation and aperiodic limit)

• Forced rotary oscillations and their resonance
curves at various degrees of damping

• Phase displacement between the exciter and reso-
nator during resonance

• Chaotic rotary oscillations
• Static determination of the direction variable D
• Dynamic determination of the moment of inertia J

1. Safety instructions

• When removing the torsional pendulum from the
packaging do not touch the scale ring. This could
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lead to damage. Always remove using the handles
provided in the internal packaging.

• When carrying the torsional pendulum always hold
it by the base plate.

• Never exceed the maximum permissible supply
voltage for the exciter motor (24 V DC).

• Do not subject the torsional pendulum to any un-
necessary mechanical stress.

2. Description, technical data

The Professor Pohl torsional pendulum consists of a
wooden base plate with an oscillating system and an
electric motor mounted on top. The oscillating system
is a ball-bearing mounted copper wheel (5), which is
connected to the exciter rod via a coil spring (6) that
provides the restoring torque. A DC motor with coarse
and fine speed adjustment is used to excite the tor-
sional pendulum. Excitement is brought about via an
eccentric wheel (14) with connecting rod (13) which

1 Exciter motor
2 Control knob for fine adjustment of the exciter voltage
3 Control knob for coarse adjustment of the exciter voltage
4 Scale ring
5 Pendulum body
6 Coil spring
7 Pointer for the exciter phase angle
8 Pointer for the pendulum’s phase angle
9 Pointer for the pendulum’s deflection
bl Exciter
bm Eddy current brake
bn Guide slot and screw to set the exciter amplitude
bo Connecting rod
bp Eccentric drive wheel
bq 4-mm safety socket for exciter voltage measurement
br 4-mm safety sockets for the exciter motor power supply
bs 4-mm safety sockets for the eddy current brake power

supply
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unwinds the coil spring then compresses it again in a
periodic sequence and thereby initiates the oscillation
of the copper wheel. The electromagnetic eddy cur-
rent brake (11) is used for damping. A scale ring (4)
with slots and a scale in 2-mm divisions extends over
the outside of the oscillating system; indicators are
located on the exciter and resonator.
The device can also be used in shadow projection dem-
onstrations.
A DC power supply unit for the torsional pendulum
U11755 is required to power the equipment.

Natural frequency: 0.5 Hz approx.
Exciter frequency: 0 to 1.3 Hz (continuously adjust-
able)
Terminals:
Motor: max. 24 V DC, 0.7 A,

via 4-mm safety sockets
Eddy current brake: 0 to 24 V DC, max. 2 A,

via 4-mm safety sockets
Scale ring: 300 mm Ø
Dimensions: 400 mm x 140 mm x 270 mm
Ground: 4 kg

2.1 Scope of supply
1 Torsional pendulum
2 Additional 10 g weights
2 Additional 20 g weights

3. Theoretical Fundamentals

3.1 Symbols used in the equations
D = Angular directional variable
J = Mass moment of inertia
M = Restoring torque
T = Period
T0 = Period of an undamped system
Td = Period of the damped system
M� E = Amplitude of the exciter moment
b = Damping torque
n = Frequency
t = Time
Λ = Logarithmic decrement
δ = Damping constant
ϕ = Angle of deflection
ϕ�0 = Amplitude at time t = 0 s
ϕ�n = Amplitude after n periods
ϕ�E = Exciter amplitude
ϕ�S = System amplitude
ω0 = Natural frequency of the oscillating system
ωd = Natural frequency of the damped system
ωE = Exciter angular frequency
ωE res = Exciter angular frequency for max. amplitude
Ψ0S = System zero phase angle

3.2 Harmonic rotary oscillation
A harmonic oscillation is produced when the restoring
torque is proportional to the deflection. In the case of

harmonic rotary oscillations the restoring torque is
proportional to the deflection angle ϕ:

M = D · ϕ
The coefficient of proportionality D (angular direction
variable) can be computed by measuring the deflec-
tion angle and the deflection moment.
If the period duration T is measured, the natural reso-
nant frequency of the system ω0 is given by

ω0 = 2 π/T

and the mass moment of inertia J is given by

ω0
2 = D

J

3.3 Free damped rotary oscillations
An oscillating system that suffers energy loss due to
friction, without the loss of energy being compensated
for by any additional external source, experiences a
constant drop in amplitude, i.e. the oscillation is
damped.
At the same time the damping torque b is proportional
to the deflectional angle ϕ

.
.

The following motion equation is obtained for the
torque at equilibrium

J b D⋅ + ⋅ + ⋅ =ϕ ϕ ϕ
.. .

0

b = 0 for undamped oscillation.
If the oscillation begins with maximum amplitude  ϕ�0

at t = 0 s the resulting solution to the differential equa-
tion for light damping (δ² < ω0²) (oscillation) is as fol-
lows

ϕ = ϕ�0  ·  e–δ ·t · cos (ωd · t)

δ = b/2 J is the damping constant and

ω ω δd 0
2 2= −

the natural frequency of the damped system.
Under heavy damping (δ² > ω0²) the system does not
oscillate but moves directly into a state of rest or equi-
librium (non-oscillating case).
The period duration Td of the lightly damped oscillat-
ing system varies only slightly from T0 of the undamped
oscillating system if the damping is not excessive.
By inserting t = n · Td  into the equation

 ϕ = ϕ�0  ·  e–δ ·t · cos (ωd · t)

and ϕ = ϕ�n  for the amplitude after n periods we ob-
tain the following with the relationship ωd = 2 π/Td

ϕ

ϕ
δ
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�
n

0
d= ⋅− ⋅e Tn

and thus from this the logarithmic decrement Λ:
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By inserting δ = Λ / Td , ω0 = 2 π / T0 and ωd = 2π / Td

into the equation

ω ω δd 0
2 2= −

we obtain:

T Td 0
2

2
= ⋅ +1

4
Λ
π

whereby the period Td can be calculated precisely pro-
vided that T0 is known.

3.4 Forced oscillations
In the case of forced oscillations a rotating motion with
sinusoidally varying torque is externally applied to the
system. This exciter torque can be incorporated into
the motion equation as follows:

J b D M t⋅ + ⋅ + ⋅ = ⋅ ⋅( )ϕ ϕ ϕ ω
.. .

sin�
E E

After a transient or settling period the torsion pendu-
lum oscillates in a steady state with the same angular
frequency as the exciter, at the same time ωE can still
be phase displaced with respect to ω0. Ψ0S is the sys-
tem’s zero-phase angle, the phase displacement be-
tween the oscillating system and the exciter.

ϕ = ϕ�S · sin (ωE · t – Ψ0S)

The following holds true for the system amplitude ϕ�S

ϕ
ω ω δ ω

�

�

=
−( ) + ⋅
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J
E
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E
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The following holds true for the ratio of system ampli-
tude to the exciter amplitude
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In the case of undamped oscillations, theoretically
speaking the amplitude for resonance (ωE equal to ω0)
increases infinitely and can lead to “catastrophic reso-
nance”.
In the case of damped oscillations with light damping
the system amplitude reaches a maximum where the
exciter’s angular frequency ωE res is lower than the sys-
tem’s natural frequency. This frequency is given by

ω ω δ
ωEres 0

2

0
2

= ⋅ −1
2

Stronger damping does not result in excessive ampli-
tude.
For the system’s zero phase angle Ψ0S the following is
true:

Ψ0S
0
2 2

=
−









arctan

2δ ω
ω ωω

For ωE = ω0 (resonance case) the system’s zero-phase
angle is Ψ0S = 90°. This is also true for δ = 0 and the
oscillation passes its limit at this value.
In the case of damped oscillations (δ > 0) where
ωE < ω0, we find that 0° ≤ Ψ0S ≤ 90° and when ωE  > ω0

it is found that 90° ≤ Ψ0S ≤ 180°.
In the case of undamped oscillations (δ = 0), Ψ0S = 0°
for ωE  < ω0 and Ψ0S = 180° for ωE  > ω0.

4. Operation

4.1 Free damped rotary oscillations
• Connect the eddy current brake to the variable volt-

age output of the DC power supply for torsion pen-
dulum.

• Connect the ammeter into the circuit.
• Determine the damping constant as a function of

the current.

4.2 Forced oscillations
• Connect the fixed voltage output of the DC power

supply for the torsion pendulum to the sockets (16)
of the exciter motor.

• Connect the voltmeter to the sockets (15) of the
exciter motor.

• Determine the oscillation amplitude as a function
of the exciter frequency and of the supply voltage.

• If needed connect the eddy current brake to the
variable voltage output of the DC power supply for
the torsion pendulum.

4.3 Chaotic oscillations
• To generate chaotic oscillations there are 4 supple-

mentary weights at your disposal which alter the
torsion pendulum’s linear restoring torque.

• To do this screw the supplementary weight to the
body of the pendulum (5).
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5. Example experiments

5.1 Free damped rotary oscillations
• To determine the logarithmic decrement Λ, the

amplitudes are measured and averaged out over
several runs. To do this the left and right deflec-
tions of the torsional pendulum are read off the
scale in two sequences of measurements.

• The starting point of the pendulum body is located
at +15 or –15 on the scale. Take the readings for
five deflections.

• From the ratio of the amplitudes we obtain Λ us-
ing the following equation

Λ =












In
ϕ

ϕ

�

�
n

n+1

 n        ϕ�    –      ϕ�    +

 0 –15 –15 –15 –15 15 15 15 15
 1 –14.8 –14.8 –14.8 –14.8 14.8 14.8 14.8 14.8
 2 –14.4 –14.6 –14.4 –14.6 14.4 14.4 14.6 14.4
 3 –14.2 –14.4 –14.0 –14.2 14.0 14.2 14.2 14.0
 4 –13.8 –14.0 –13.6 –14.0 13.8 13.8 14.0 13.8
 5 –13.6 –13.8 –13.4 –13.6 13.4 13.4 13.6 13.6

 n Ø ϕ�   – Ø ϕ�  + Λ  – Λ  +

 0 –15 15
 1 –14.8 14.8 0.013 0.013
 2 –14.5 14.5 0.02 0.02
 3 –14.2 14.1 0.021 0.028
 4 –13.8 13.8 0.028 0.022
 5 –13.6 13.5 0.015 0.022

• The average value for Λ comes to Λ = 0.0202.
• For the pendulum oscillation period T the follow-

ing is true: t = n · T. To measure this, record the
time for 10 oscillations using a stop watch and cal-
culate T.

 T = 1.9 s

• From these values the damping constant δ can be
determined from δ = Λ / T.

δ = 0.0106 s–1

• For the natural frequency ω the following holds
true

ω π δ= 





−2
T

2
2

ω = 3.307 Hz

5.2 Free damped rotary oscillations
• To determine the damping constant δ as a func-

tion of the current Ι flowing through the electro-
magnets the same experiment is conducted with
an eddy current brake connected at currents of
Ι = 0.2 A, 0.4 A and 0.6 A.

ΙΙΙΙΙ = 0.2 A

 n        ϕ�    – Ø ϕ�  –     Λ  –

 0 –15 –15 –15 –15 –15
 1 –13.6 –13.8 –13.8 –13.6 –13.7 0.0906
 2 –12.6 –12.8 –12.6 –12.4 –12.6 0.13
 3 –11.4 –11.8 –11.6 –11.4 –11.5 0.0913
 4 –10.4 –10.6 –10.4 –10.4 –10.5 0.0909
 5     9.2   –9.6   –9.6   –9.6   –9.5 0.1

• For T = 1.9 s and the average value of Λ = 0.1006
we obtain the damping constant: δ = 0.053 s–1

ΙΙΙΙΙ = 0.4 A

 n            ϕ�   – Øϕ�  –   Λ  –

 0 –15 –15 –15 –15 –15
 1 –11.8 –11.8 –11.6 –11.6 –11.7 0.248
 2   –9.2   –9.0   –9.0   –9.2   –9.1 0.25
 3   –7.2   –7.2   –7.0   –7.0   –7.1 0.248
 4   –5.8   –5.6   –5.4   –5.2   –5.5 0.25
 5   –4.2   –4.2   –4.0   –4.0   –4.1 0.29

• For T = 1.9 s and an average value of Λ = 0.257 we
obtain the damping constant: δ = 0.135 s–1

ΙΙΙΙΙ = 0.6 A

 n            ϕ�   – Øϕ�  –  Λ  –

 0 –15 –15 –15 –15 –15
 1  –9.2   –9.4   –9.2   –9.2   –9.3 0.478
 2  –5.4   –5.2   –5.6   –5.8   –5.5 0.525
 3  –3.2   –3.2   –3.2   –3.4   –3.3 0.51
 4  –1.6   –1.8   –1.8   –1.8   –1.8 0.606
 5  –0.8   –0.8   –0.8   –0.8   –0.8 0.81

• For T = 1.9 s and an average value of Λ = 0.5858
we obtain the damping constant: δ = 0.308 s–1

5.3 Forced rotary oscillation
• Take a reading of the maximum deflection of the

pendulum body to determine the oscillation am-
plitude as a function of the exciter frequency or
the supply voltage.

T = 1.9 s

Motor voltage V ϕ�

3 0.8
4 1.1
5 1.2
6 1.6
7 3.3
7.6 20.0
8 16.8
9 1.6

10 1.1



10

• After measuring the period T the natural frequency
of the system ω0 can be obtained from

ω0 = 2 π/T = 3.3069 Hz

• The most extreme deflection arises at a motor volt-
age of 7.6 V, i.e. the resonance case occurs.

• Then the same experiment is performed with an
eddy current brake connected at currents of
Ι = 0.2 A, 0.4 A and 0.6 A.

ΙΙΙΙΙ = 0.2 A

Motor voltage V ϕ�

3.0 0.9
4.0 1.1
5.0 1.2
6.0 1.7
7.0 2.9

 7.6 15.2
8.0 4.3
9.0 1.8

10.0 1.1

ΙΙΙΙΙ = 0.4 A

Motor voltage V ϕ�

3.0 0.9
4.0 1.1

5.0 1.3
6.0 1.8
7.0 3.6
7.6 7.4
8.0 3.6
9.0 1.6

10.0 1.0

ΙΙΙΙΙ = 0.6 A

Motor voltage V ϕ�

3.0 0.9
4.0 1.1
5.0 1.2
6.0 1.6
7.0 2.8

7.6.0 3.6
8.0 2.6
9.0 1.3

10.0 1.0

• From these measurements the resonance curves can
be plotted in a graph depicting the amplitudes
against the motor voltage.

• The resonant frequency can be determined by find-
ing the half-width value from the graph.

Resonance curves
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